Skip to content
Go back

积分与微分方程

Edit page

积分与微分方程

积分

不定积分

不定积分的三种求法
g(ψ(x))ψ(x) ⁣dx=g(u) ⁣duu=ψ(x)\int g(\psi(x))\psi'(x) \mathop{}\!\mathrm{d} x = \int g(u) \mathop{}\!\mathrm{d} u \Big|_{u = \psi(x)}

x=ψ(t)x = \psi(t)

g(x)dx=g(ψ(x))dψ(x)=g(ψ(x))ψ(x)dx\int g(x) d x = \int g(\psi(x)) d \psi(x) = \int g(\psi(x)) \psi'(x) d x

ps: 此法要求 x=ψ(u)x = \psi (u) 为单调可导函数,定积分要注意代换之后的积分范围会根据代换函数的增减性调整,切记得将 u=ψ1(x)u = \psi^{-1}(x) 回代; 常见代换方法:

  1. 三角函数代换;
  2. 根式代换;
  3. 倒代换;
  4. 复杂函数的直接代换(比如反三角函数和对数函数等);

**ps:**分布积分经常创造出积分再现或者积分抵消的情形;

uv ⁣dx=uvv ⁣du\int uv' \mathop{}\!\mathrm{d} x = uv - \int v' \mathop{}\!\mathrm{d} u
基本积分公式
  1. 有理函数

    xa ⁣dx=xa+1a+1+C(a1);1x ⁣dx=lnx ⁣dxax ⁣dx=axlna ⁣dx+C(a>0,a1);ex ⁣dx=ex+C;\begin{aligned} &\int x^a \mathop{}\!\mathrm{d} x = \frac{x^{a+1}}{a+1} + C(a \neq -1); & &\int \frac{1}{x} \mathop{}\!\mathrm{d} x = \ln|x| \mathop{}\!\mathrm{d} x \\ &\int a^x \mathop{}\!\mathrm{d} x = \frac{a^x}{\ln a} \mathop{}\!\mathrm{d} x + C(a > 0, a \neq 1); & &\int e^x \mathop{}\!\mathrm{d} x = e^x + C; \\ \end{aligned}
  2. 三角函数

    sinx ⁣dx=cosx+C;cos ⁣dx=sinx+C;tanx ⁣dx=lncosx+C;cotx ⁣dx=lnsinx+C;secx ⁣dx=lnsecx+tanx+C;cscx ⁣dx=lncscxcotx+C;sec2x ⁣dx=tanx+Ccsc2x ⁣dx=cotx+secxtanx ⁣dx=secx+Ccscxcotx ⁣dx=cscx+Ccos2x ⁣dx=x2sin2x4+Csin2x ⁣dx=x2+sin2x4+Ctan2x ⁣dx=tanxx+Ccot2x ⁣dx=cotxx+C\begin{aligned} &\int \sin x \mathop{}\!\mathrm{d} x = - \cos x + C; & &\int \cos \mathop{}\!\mathrm{d} x = \sin x + C; \\ &\int \tan x \mathop{}\!\mathrm{d} x = -\ln |\cos x| + C; & &\int \cot x \mathop{}\!\mathrm{d} x = \ln \sin x + C; \\ &\int \sec x \mathop{}\!\mathrm{d} x = \ln |\sec x + \tan x| + C; & &\int \csc x \mathop{}\!\mathrm{d} x = \ln |\csc x - \cot x| + C; \\ &\int \sec^2 x \mathop{}\!\mathrm{d} x = \tan x + C & &\int \csc^2 x \mathop{}\!\mathrm{d} x = -\cot x + \\ &\int \sec x \tan x \mathop{}\!\mathrm{d} x = \sec x + C& &\int \csc x \cot x \mathop{}\!\mathrm{d} x = -\csc x + C \\ &\int \cos^2 x \mathop{}\!\mathrm{d} x = \frac{x}{2} - \frac{\sin 2x}{4} + C& &\int \sin^2 x \mathop{}\!\mathrm{d} x = \frac{x}{2} + \frac{\sin 2x}{4} + C\\ &\int \tan^2 x \mathop{}\!\mathrm{d} x = \tan x - x + C& &\int \cot^2 x \mathop{}\!\mathrm{d} x = - \cot x - x + C\\ \end{aligned}

sin2x,cos2x\sin^2 x , \cos^2 x 通过降幂公式 cos2x=2cos2x1=12sin2x\cos 2x = 2\cos^2 x - 1 = 1 - 2\sin^2 x ,将幂次降下来再进行积分; tan2x,cot2x\tan^2 x , \cot^2 x 通过切割转换公式 tan2=sec2x1,cot2=csc2x1\tan^2 = \sec^2 x - 1, \cot^2 = \csc^2 x - 1 ,将正余切的积分转换为正余割的幂再进行积分;

  1. 根式  ⁣dx1x2=arcsinx+C ⁣dxa2x2=arcsinxa+C ⁣dx1+x2=arctanx+C ⁣dxa2+x2=1aarctanxa+C ⁣dxx2a2=12alnxax+a+C ⁣dxx2±a2=ln(x+a2±x2)+Ca2x2 ⁣dx=a22arcsinxa+x2a2x2+C\begin{aligned} &\int \frac{\mathop{}\!\mathrm{d} x}{\sqrt{1 - x^2}} = \arcsin x + C& &\int \frac{\mathop{}\!\mathrm{d} x}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a} + C\\ &\int \frac{\mathop{}\!\mathrm{d} x}{1 + x^2} = \arctan x + C& &\int \frac{\mathop{}\!\mathrm{d} x}{a^2 + x^2} = \frac{1}{a} \arctan \frac{x}{a} + C\\ &\int \frac{\mathop{}\!\mathrm{d} x}{x^2 - a^2} = \frac{1}{2a} \ln|\frac{x - a}{x + a}| + C\\ &\int \frac{\mathop{}\!\mathrm{d} x}{\sqrt{x^2 \pm a^2}} = \ln(x + \sqrt{a^2 \pm x^2}) + C\\ &\int \sqrt{a^2 - x^2} \mathop{}\!\mathrm{d} x = \frac{a^2}{2} \arcsin \frac{x}{a} + \frac{x}{2} \sqrt{a^2 - x^2} + C \end{aligned}

axf(x)\int^{x}_{a} f(x)f(x)f(x)f(x)f'(x) 的关系

f(x)f(x)0xf(t) ⁣dt\int^{x}_{0}f(t) \mathop{}\!\mathrm{d} taxf(t) ⁣dt\int^{x}_{a}f(t) \mathop{}\!\mathrm{d} tf(x)f'(x)
周期函数周期函数(条件:0Tf(t) ⁣dt=0\int^{T}_{0}f(t) \mathop{}\!\mathrm{d} t = 0)周期函数周期函数
奇函数偶函数偶函数偶函数
偶函数奇函数不确定奇函数

定积分

积分中值定理
baf(x) ⁣dx=f(ξ)(ba)\int^{a}_{b} f(x) \mathop{}\!\mathrm{d} x = f(\xi) (b - a)
重要公式总结
区间再现公式
baf(x) ⁣dx=baf(a+bx) ⁣dxbaf(x) ⁣dx=12ab[f(x)+f(a+bx)] ⁣dxabf(x) ⁣dx=aa+b2[f(x)+f(a+bx)] ⁣dx\begin{aligned} &\int^{a}_{b} f(x) \mathop{}\!\mathrm{d} x = \int^{a}_{b} f(a + b - x) \mathop{}\!\mathrm{d} x\\ &\int^{a}_{b} f(x) \mathop{}\!\mathrm{d} x = \frac{1}{2} \int^{b}_{a} \lbrack f(x) + f(a + b - x) \rbrack \mathop{}\!\mathrm{d} x\\ &\int^{b}_{a} f(x) \mathop{}\!\mathrm{d} x = \int^{\frac{a + b}{2}}_{a} \lbrack f(x) + f(a + b - x) \rbrack \mathop{}\!\mathrm{d} x\\ \end{aligned}
华氏公式(点火公式)
0π2sinnx ⁣dx=0π2cosnx ⁣dx={n1nn3n2231,n > 1 and n is oddn1nn3n2231,n > 0 and n is even0πsinnx ⁣dx={2n1nn3n2231,n > 1 and n is odd2n1nn3n212π2,n > 0 and n is even0πcosnx ⁣dx={0,n > 0 and n is odd2n1nn3n212π2,n > 0 and n is even02πsinnx ⁣dx={0,n > 0 and n is odd4n1nn3n212π2,n > 0 and n is even02πcosnx ⁣dx=02πsinnx ⁣dx={0,n > 0 and n is odd4n1nn3n212π2,n > 0 and n is even\begin{aligned} &\int^{\frac{\pi}{2}}_{0} \sin^n x \mathop{}\!\mathrm{d} x = \int^{\frac{\pi}{2}}_{0} \cos^n x \mathop{}\!\mathrm{d} x = \begin{cases} \dfrac{n - 1}{n} \cdot \dfrac{n - 3}{n - 2} \cdot \cdots \dfrac{2}{3} \cdot 1, \text{n > 1 and n is odd}\\ \dfrac{n - 1}{n} \cdot \dfrac{n - 3}{n - 2} \cdot \cdots \dfrac{2}{3} \cdot 1, \text{n > 0 and n is even}\\ \end{cases}\\ &\int^{\pi}_{0} \sin^n x \mathop{}\!\mathrm{d} x = \begin{cases} 2 \cdot \dfrac{n - 1}{n} \cdot \dfrac{n - 3}{n - 2} \cdot \cdots \cdot \dfrac{2}{3} \cdot 1, \text{n > 1 and n is odd}\\ 2 \cdot \dfrac{n - 1}{n} \cdot \dfrac{n - 3}{n - 2} \cdot \cdots \cdot \dfrac{1}{2} \cdot \frac{\pi}{2}, \text{n > 0 and n is even} \end{cases}\\ &\int^{\pi}_{0} \cos^n x \mathop{}\!\mathrm{d} x = \begin{cases} 0, \text{n > 0 and n is odd}\\ 2 \cdot \dfrac{n - 1}{n} \cdot \dfrac{n - 3}{n - 2} \cdot \cdots \cdot \dfrac{1}{2} \cdot \dfrac{\pi}{2}, \text{n > 0 and n is even} \end{cases}\\ &\int^{2\pi}_{0} \sin^n x \mathop{}\!\mathrm{d} x = \begin{cases} 0, \text{n > 0 and n is odd}\\ 4 \cdot \dfrac{n - 1}{n} \cdot \dfrac{n - 3}{n - 2} \cdot \cdots \cdot \dfrac{1}{2} \cdot \dfrac{\pi}{2}, \text{n > 0 and n is even} \end{cases}\\ &\int^{2\pi}_{0} \cos^n x \mathop{}\!\mathrm{d} x = \int^{2\pi}_{0} \sin^n x \mathop{}\!\mathrm{d} x = \begin{cases} 0, \text{n > 0 and n is odd}\\ 4 \cdot \dfrac{n - 1}{n} \cdot \dfrac{n - 3}{n - 2} \cdot \cdots \cdot \dfrac{1}{2} \cdot \dfrac{\pi}{2}, \text{n > 0 and n is even} \end{cases}\\ \end{aligned}
其他含有三角函数的公式
0πxf(sinx) ⁣dx=π20πf(sinx) ⁣dx0πxf(sinx) ⁣dx=π0π2f(sinx) ⁣dx0π2f(sinx) ⁣dx=0π2f(cosx) ⁣dx0π2f(sinx,cosx) ⁣dx=0π2f(cosx,sinx) ⁣dx\begin{aligned} &\int^{\pi}_{0} x f(\sin x) \mathop{}\!\mathrm{d} x = \dfrac{\pi}{2} \int^{\pi}_{0} f(\sin x ) \mathop{}\!\mathrm{d} x\\ &\int^{\pi}_{0} x f(\sin x) \mathop{}\!\mathrm{d} x = \pi \int^{\frac{\pi}{2}}_{0} f(\sin x) \mathop{}\!\mathrm{d} x\\ &\int^{\frac{\pi}{2}}_{0} f(\sin x) \mathop{}\!\mathrm{d} x = \int^{\frac{\pi}{2}}_{0} f(\cos x) \mathop{}\!\mathrm{d} x\\ &\int^{\frac{\pi}{2}}_{0} f(\sin x, \cos x) \mathop{}\!\mathrm{d} x = \int^{\frac{\pi}{2}}_{0} f(\cos x, \sin x) \mathop{}\!\mathrm{d} x \end{aligned}
区间简化公式
abf(x) ⁣dx=π2π2f(a+b2+ba2sint)ba2cost ⁣dtabf(x) ⁣dx=01f[a+(ba)t] ⁣dtaaf(x) ⁣dx=0a[f(x)+f(x)] ⁣dx\begin{aligned} &\int^{b}_{a} f(x) \mathop{}\!\mathrm{d} x = \int^{\frac{\pi}{2}}_{-\frac{\pi}{2}} f(\dfrac{a + b}{2} + \frac{b - a}{2} \sin t) \cdot \frac{b - a}{2} \cos t \mathop{}\!\mathrm{d} t\\ &\int^{b}_{a} f(x) \mathop{}\!\mathrm{d} x = \int^{1}_{0} f\lbrack a + (b - a)t \rbrack \mathop{}\!\mathrm{d} t\\ &\int^{a}_{-a} f(x) \mathop{}\!\mathrm{d} x = \int^{a}_{0} \lbrack f(x) + f(-x) \rbrack \mathop{}\!\mathrm{d} x\\ \end{aligned}

变限积分

  1. 直接求导
0f(x)g(t) ⁣dtg(f(x))f(x)\int^{f(x)}_{0} g(t) \mathop{}\!\mathrm{d} t \Rightarrow g(f(x))f'(x)
  1. 换元求导
xx+f(x)g(tx) ⁣dtu=tx=0f(x)g(u) ⁣du\int^{x + f(x)}_{x} g(t - x) \mathop{}\!\mathrm{d} t \xRightarrow{u = t - x} = \int^{f(x)}_{0} g(u) \mathop{}\!\mathrm{d} u
  1. 拆分求导,一般是对称区间奇函数或者绝对值等等分段函数
  2. 换序积分,画出积分范围,再换序

注意常考

  1. 反函数的导函数关系
  2. 原函数与积分的关系
  3. 积分中值定理
  4. 拉格朗日中值定理
  5. exe^x 积分的处理,导数乘法公式的逆用

反常积分与 Γ\varGamma 函数

微分方程

可分离变量的微分方程

 ⁣dy ⁣dx=P(x)y ⁣dyy=P(x) ⁣dxlny=P(x) ⁣dxy=CeP(x) ⁣dx\frac{\mathop{}\!\mathrm{d} y}{\mathop{}\!\mathrm{d} x} = P(x) y \rightarrow \frac{\mathop{}\!\mathrm{d} y}{y} = P(x) \mathop{}\!\mathrm{d} x \to \ln y = \int P(x) \mathop{}\!\mathrm{d} x \to y = C e ^{\int P(x) \mathop{}\!\mathrm{d} x}

齐次微分方程

 ⁣dy ⁣dx=ϕ(yx)u=yx ⁣dy ⁣dx=x ⁣du ⁣dx+u=ϕ(u) ⁣duuϕ(u)= ⁣dxxx=Ce ⁣duuϕ(u),u=yx\begin{aligned} & \frac{\mathop{}\!\mathrm{d} y}{\mathop{}\!\mathrm{d} x} = \phi(\frac{y}{x}) \xRightarrow{u = \frac{y}{x}} \frac{\mathop{}\!\mathrm{d} y}{\mathop{}\!\mathrm{d} x} = x \frac{\mathop{}\!\mathrm{d} u}{\mathop{}\!\mathrm{d} x} + u = \phi(u) \\ & \Rightarrow \frac{\mathop{}\!\mathrm{d} u}{u - \phi (u)} = \frac{\mathop{}\!\mathrm{d} x}{x} \\ & \Rightarrow x = C e ^{\int \frac{\mathop{}\!\mathrm{d} u}{u - \phi (u)}}, u = \frac{y}{x} \end{aligned}
可化为齐次的微分方程
 ⁣dy ⁣dx=a1x+b1y+c1a2x=b2y+c2x=X+k1,y=Y+k2 ⁣dy ⁣dx= ⁣dY ⁣dX=a1X+b1Ya2X+b2Yu=YX ⁣dY ⁣dX=b1u+a1b2u+a2\frac{\mathop{}\!\mathrm{d} y}{\mathop{}\!\mathrm{d} x} = \frac{a_1 x + b_1 y + c_1}{a_2 x = b_2 y + c_2} \xRightarrow{x = X + k_1, y = Y + k_2} \frac{\mathop{}\!\mathrm{d} y}{\mathop{}\!\mathrm{d} x} = \frac{\mathop{}\!\mathrm{d} Y}{\mathop{}\!\mathrm{d} X} = \frac{a_1 X + b_1 Y}{a_2 X + b_2 Y} \xRightarrow{u = \frac{Y}{X}} \frac{\mathop{}\!\mathrm{d} Y}{\mathop{}\!\mathrm{d} X} = \frac{b_1 u + a_1}{b_2 u + a_2}

上述 k1,k2k_1, k_2 的取值能够将常数项 c1,c2c_1, c_2 化为 0,接下来的步骤和齐次线性方程的解法一致了。

一阶线性微分方程

有以下一阶线性微分方程:

 ⁣dy ⁣dx+P(x)y=Q(x)\frac{\mathop{}\!\mathrm{d} y}{\mathop{}\!\mathrm{d} x} + P(x)y = Q(x)

Q(x)=0Q(x) = 0 得到非齐次微分方程对应的齐次方程

 ⁣dy ⁣dx=P(x)y\frac{\mathop{}\!\mathrm{d} y}{\mathop{}\!\mathrm{d} x} = - P(x) y

齐次方程的通解:

 ⁣dy ⁣dx+P(x)y=0 ⁣dyy=P(x) ⁣dxy=CeP(x) ⁣dx\frac{\mathop{}\!\mathrm{d} y}{\mathop{}\!\mathrm{d} x} + P(x)y = 0 \Rightarrow \frac{\mathop{}\!\mathrm{d} y}{y} = -P(x) \mathop{}\!\mathrm{d} x \Rightarrow y = Ce ^{- \int P(x) \mathop{}\!\mathrm{d} x}

常数变易法解出非齐次微分方程的通解:

y=ueP(x) ⁣dxy = u e ^{- \int P(x) \mathop{}\!\mathrm{d} x},

 ⁣dy ⁣dx=P(x)ueP(x) ⁣dx+ ⁣du ⁣dxeP(x) ⁣dx=Q(x)P(x)y=Q(x)P(x)ueP(x) ⁣dx ⁣du ⁣dx=Q(x)eP(x) ⁣dxu=Q(x)eP(x) ⁣dx ⁣dx+Cy=(Q(x)eP(x) ⁣dx ⁣dx+C)eP(x) ⁣dx\begin{aligned} \frac{\mathop{}\!\mathrm{d} y}{\mathop{}\!\mathrm{d} x} & = -P(x) u e ^{- \int P(x) \mathop{}\!\mathrm{d} x} + \frac{\mathop{}\!\mathrm{d} u}{\mathop{}\!\mathrm{d} x} e ^{-\int P(x) \mathop{}\!\mathrm{d} x} \\ & = Q(x) - P(x) y \\ & = Q(x) - P(x) u e ^{-\int P(x) \mathop{}\!\mathrm{d} x} \\ \Longrightarrow & \frac{\mathop{}\!\mathrm{d} u}{\mathop{}\!\mathrm{d} x} = Q(x) e ^{\int P(x) \mathop{}\!\mathrm{d} x} \\ \Longrightarrow & u = \int Q(x) e ^{\int P(x) \mathop{}\!\mathrm{d} x} \mathop{}\!\mathrm{d} x + C \\ \Longrightarrow & y = \big( \int Q(x) e ^{\int P(x) \mathop{}\!\mathrm{d} x} \mathop{}\!\mathrm{d} x + C \big) e ^{- \int P(x) \mathop{}\!\mathrm{d} x} \end{aligned}

伯努利方程

 ⁣dy ⁣dx+P(x)y=Q(x)ynyn ⁣dy ⁣dx+P(x)y1n=Q(x) ⁣dy1n ⁣dx+(1n)P(x)y1n=(1n)Q(x)\begin{aligned} & \frac{\mathop{}\!\mathrm{d} y}{\mathop{}\!\mathrm{d} x} + P(x)y = Q(x)y ^{n} \\ \Rightarrow & y^{-n} \frac{\mathop{}\!\mathrm{d} y}{\mathop{}\!\mathrm{d} x} + P(x) y^{1-n} = Q(x) \\ \Rightarrow & \frac{\mathop{}\!\mathrm{d} y^{1-n}}{\mathop{}\!\mathrm{d} x} + (1-n)P(x)y^{1-n} = (1-n)Q(x) \end{aligned}

最后化成了关于 y1ny^{1-n}xx 的微分方程,一阶线性微分方程的通解求法,可以求出 y1ny^{1-n} 的通解,进而求出 yy 的通解。

可降阶的高阶微分方程

y(n)=f(x)y^{(n)} = f(x)

无限求积分直到解出来

y=(((y(n) ⁣dx+C1) ⁣dx+C2)+)+Cn1y = \int \Big( \int \dots \big( \int (\int y ^{(n)} \mathop{}\!\mathrm{d} x + C_1 ) \mathop{}\!\mathrm{d} x + C_2 \big) + \dots \Big) + C_{n-1}
y=f(x,y)y'' = f(x, y')

该类型的微分方程右端不显含未知函数 yy ,我们设 y=py' = p,则有

p=f(x,p)p' = f(x, p)

解该一阶微分方程得到:

p=φ(x,C1) ⁣dy ⁣dx=φ(x,C1) ⁣dxy=φ(x,C1) ⁣dx\begin{aligned} p &= \varphi(x, C_1) \\ \Rightarrow \frac{\mathop{}\!\mathrm{d} y}{\mathop{}\!\mathrm{d} x} &= \varphi(x, C_1) \mathop{}\!\mathrm{d} x \\ \Rightarrow y &= \int \varphi(x, C_1) \mathop{}\!\mathrm{d} x \end{aligned}
y=f(y,y)y'' = f(y, y')

该方程不显含自变量 xx 我们令 p=yp = y' 将关于 yy 的二阶微分方程转换成关于 pp 的一阶微分方程

y= ⁣dy ⁣dy ⁣dy ⁣dx=p ⁣dp ⁣dx=f(y,p)y'' = \frac{\mathop{}\!\mathrm{d} y'}{\mathop{}\!\mathrm{d} y} \cdot \frac{\mathop{}\!\mathrm{d} y}{\mathop{}\!\mathrm{d} x} = p \cdot \frac{\mathop{}\!\mathrm{d} p}{\mathop{}\!\mathrm{d} x} = f(y, p)

这是一个关于 ppyy 的一阶微分方程,假设其通解为:

y=p=φ(y,C1) ⁣dyφ(y,C1)=x+C2\begin{aligned} y' = p &= \varphi(y, C_1) \\ \Rightarrow \int \frac{\mathop{}\!\mathrm{d} y}{\varphi (y, C_1)} &= x + C_2 \end{aligned}

高阶微分方程

线性微分方程解的结构

考虑一个二阶线性微分方程:

y+P(x)y+Q(x)y=0(1)\tag{1} y'' + P(x)y' + Q(x)y = 0

定理 1 如果函数 y1(x)y_1(x)y2(x)y_2(x) 是方程 (1)(1) 的解,那么

y=C1y1(x)+C2y2(x)y = C_1 y_1(x) + C_2 y_2(x)

也是方程 (1)(1) 的解,其中 C1,C2C_1, C_2 是任意常数。

线性相关的概念:

设函数 y1(x),y2(x),,yn(x)y_1(x), y_2(x), \dots, y_n(x) 为定义在区间 II 上的 nn 个函数,如果存在 nn 个不全为零的常数 k1,k2,k3,,knk_1, k_2, k_3, \dots, k_n 使得 k1y1(x)+k2y2(x)++knyn(x)0k_1 y_1(x) + k_2 y_2(x) + \dots + k_n y_n(x) \equiv 0 我们说这 nn 个函数 y1(x),y2(x),y3(x),,yn(x)y_1(x), y_2(x), y_3(x), \dots, y_n(x) 线性相关,否则称为线性无关.

定理 2 如果 y1(x)y_1(x)y2(x)y_2(x) 是方程 (1)(1) 的两个线性无关特解,那么

y=C1y1(x)+C2y2(x)(C1,C2  are constants)y = C_1 y_1(x) + C_2 y_2(x) \quad (C_1, C_2 \; \text{are constants})

就是方程 (1)(1) 的特解。

… 未完待续

常系数齐次线性微分方程

常系数非齐次线性微分方程

欧拉方程


Edit page
Share this post on:

Previous Post
函数、极限与连续
Next Post
集合